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1 Review

1.1 Comparison of Bayesian and Frequentist Philosophy

The differences between the two schools can be summarized in the following table.

Bayesian Frequentist

View on probability
Degree of belief
(Subjective)

Limiting relative frequencies
(Objective)

θ is a Random variable Unknown constant

Infer on θ by Modeling a probability distribution
Procedures with well-defined
long run frequency properties

Common methods Bayes estimator, MAP,Bayes factor MME,MLE,C.I.

*This is a summary from Ch.11, All of Statistics (Wasserman 2003).
*An insightful discussion between Frequentist and Bayesian methods is given in example 1.7
from lecture note 1.

1.2 Posterior Calculation

Let Θ be the parameter space. Define the sampling density as f(x | θ) and the prior density
be f(θ) (these are known).

• Prior predictive: f(x) =
∫
Θ
f(x, θ)dθ =

∫
Θ
f(x | θ)f(θ)dθ

• Posterior: f(θ | x1:n) ∝ f(x1:n | θ)f(θ)

• Posterior predictive:

f(xn+1 | x1:n) =

∫
Θ

f(θ | x1:n)f(xn+1 | x1:n, θ)dθ

∗
=

∫
Θ

f(θ | x1:n)f(xn+1 | θ)dθ

*The second equality holds if xn+1 and x1:n are conditional independent given θ.

Remark 1.1. The building blocks of Bayesian inference is the prior f(θ) and the sampling
distribution f(x1:n | θ). They are assumed by us based on our own belief. After observing
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data, inference is conducted through the following formula

f(θ | x1:n) =
f(x1:n | θ)f(θ)

f(x1:n)

∝ f(x1:n | θ)f(θ) (1.1)

We call f(x1:n | θ)f(θ) the kernel of the probability density function. The above formula
will be used intensively through out the whole course.

Remark 1.2. There are two reasons why we only care about the proportional part in 1.1,

1. The denominator f(x1:n) is a “constant” with respect to θ, because it doesn’t depend
on θ. On the other hand, f(θ | x1:n) is the density of θ given the data, it is not a density
of x1:n. Hence we can “discard” f(x1:n) from this density.

2. Using the following relation, once we know f(x1:n | θ)f(θ), we immediately know f(x1:n).

f(x1:n) =

∫
Θ

f(x1:n | θ)f(θ)dθ (1.2)

Relation 1.2 comes from the fact that f(θ | x1:n) is a density function, and it satisfies that∫
Θ

f(θ | x1:n)dθ =

∫
Θ

f(x1:n | θ)f(θ)
f(x1:n)

dθ = 1.

Remark 1.3. The posterior f(θ | x1:n) is a function of θ, and it depends on x1:n as well.

1. The joint density f(x1:n, θ) is a function of both x1:n and θ.

2. Given x1:n, θ is a random variable, and f(θ | x1:n) is the density function of θ only. It
also depends on x1:n because f(θ | X1:n = x1:n) = f(X1:n = x1:n, θ)/fX(X1:n = x1:n).

3 Experiment: Revisit Example 1.3. The model is [x | θ]
IID∼ N(θ, σ2), θ ∼ N(θ0, τ

2
0 ).

Assume σ2 = 1, θ0 = 0, τ 20 = 1. Then [θ | x] ∼ N(x/2, 1/2).

• When x = 5, [θ | x = 5] ∼ N(5/2, 1/2). It is represented in the following figure in
purple.

• When x = 10, [θ | x = 10] ∼ N(5, 1/2). It is represented in the following figure in
orange.
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 Takeaway: The data decides which curve the posterior density is.

Example 1.1. Let x denote the random variable of interest. The following table summarizes
the density of common distribution (more details are given in chapter 2 lecture note).

Distribution Kernel (in red)

N(µ, σ2) (2πσ2)−1/2exp
{
− 1

2σ2 (x− µ)2
}

θExp(1) 1
θ
e−x/θ

1{x>0}

Ga(α)/β βα

Γ(α)
xα−1e−βx

1{x>0}

β/Ga(α) βα

Γ(α)
x−α−1e−β/x

1{x>0}

χ2
k

1
2k/2Γ(k/2)

xk/2−1e−x/2
1{x>0}

Po(θ) e−θ θx

x!
1{x=0,1,...}

Bin(m, θ)
(
m
x

)
θx(1− θ)m−x

1{x=0,1,...}

Beta(α, β) 1
B(α,β)

xα−1(1− x)β−1
1{x∈(0,1)}

Table 1: Density of Common Distribution

Example 1.2. Let Θ be the support of θ and the density of θ be f(θ) = cK(θ), where K(θ)
is the probability kernel and c is a constant (with respect to θ). Then, we have,

1 =

∫
Θ

f(θ)dθ ⇒ 1

c
=

∫
Θ

K(θ)dθ.

For example, if θ ∼ Ga(α)/β, then c = βα/Γ(α) and K(θ) = θα−1e−βθ
1(θ > 0). Therefore,∫ ∞

0

θα−1e−βθ
1(θ > 0)dθ =

1

c
=

Γ(α)

βα
,

where Γ(α) = (α− 1)!.
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And if θ ∼ Beta(α, β), then c = Γ(α+β)
Γ(α)Γ(β)

, K(θ) = θα−1(1− θ)β−1, and∫ 1

0

θα−1(1− θ)β−1dθ =
Γ(α)Γ(β)

Γ(α + β)
.

Takeaway: Some integrals can be found without direct calculation. Try to find the integral

of the kernels of other common distributions.

Example 1.3. (Poisson-Gamma Model) Consider the following model,

x1:n | θ iid∼ Po(θ)

θ ∼ Ga(α)/β

1. Find the posterior.

2. Find the prior predictive density, posterior distribution given x1:n and also the posterior
predictive.

3. Let α = 12, β = 2. Given x1:4 = (6, 7, 5, 4).

(a) Produce plots of prior and posterior [θ | x1:n] PDF on the same graph for n =
1, . . . , 4. Comment.

(b) Produce plots of prior predictive and posterior predictive [xn+1 | x1:n] PDF on the
same graph for n = 1, . . . , 4. Comment.

Solution:

1. For the posterior,

f(θ | x1:n) ∝ f(θ)f(x1:n | θ)

=
βα

Γ(α)
θα−1e−βθ

1{θ>0}

n∏
i=1

e−θθxi

xi!
1{xi=0,1,...}

=
βα

Γ(α)
θα−1e−βθ

1{θ>0}e
−nθθ

∑n
i=1 xi

n∏
i=1

1

xi!
1{xi=0,1,...}

∝ θα+
∑n

i=1 xi−1e−θ(β+n)
1{θ>0}.

Therefore, θ | x1:n follows Ga(αn)/βn, where αn = α +
∑n

i=1 xi and βn = β + n.

2. For prior predictive, we have

f(x) =

∫ ∞

0

f(x | θ)f(θ)dθ

=

∫ ∞

0

e−θθx

x!
1{x=0,1,...} ·

βα

Γ(α)
θα−1e−βθdθ

=
βα

x!Γ(α)
1{x=0,1,...}

∫ ∞

0

θα+x−1e−θ(β+1)dθ

=
βα

x!Γ(α)
· Γ(a+ x)

(β + 1)α+x
1{x=0,1,...}
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Finally for the posterior predictive, since xn+1 and x1:n are conditionally independent
given θ, we have by similar calculation in prior predictive

f(xn+1 | x1:n) =

∫ ∞

0

f(θ | x1:n)f(xn+1 | θ)dθ

=
βαn
n

xn+1!Γ(αn)
· Γ(αn + xn+1)

(βn + 1)αn+xn+1
1{xn+1=0,1,...}

Notice that we can replace the parameters α, β in the prior predictive by αn, βn to
quickly get the posterior predictive.

3. As a remark, we compute the log-density first and then take exponential for numerical
stability; see Experiment 1.4 for more discussion. Note that the true DGP is generated
as followed,

1 ## true DGP, pretend you do not know it
2 set.seed(999)
3 theta = 5
4 x = rpois(5,theta)
5 x
6 #[1] 4 5 2 7 7

(a) It is clear that given more data, the posterior changes gradually.The mode moves
towards the true θ = 5. Intuitively, our belief is corrected by more observations.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

θ

f (
 θ

 | 
x 1

:n
 )

1 2 3 4 5 6 7 8

n=0
n=1
n=2
n=3
n=4
n=5

1 n = length(x)

Cheuk Hin (Andy) CHENG, Di SU – Tutorial 1 – STAT 4010 – Spring 2022 5



STAT 4010 | Tutorial 1

2 alpha = 12
3 beta = 4
4

5

6 # Step 1: compute density for a grid of theta
7 theta=seq(1, 8,length.out=100)
8 post=array(NA, dim=c(100,n+1))
9 ##prior density

10 post[,1] = dgamma(theta,shape = alpha,rate = beta)
11 #posterior density
12 for(i in 1:length(x)){
13 alpha_n = alpha+sum(x[1:i])
14 beta_n = beta+i
15 post[,i+1] = dgamma(theta,shape = alpha_n,rate = beta_n)
16 }
17

18 # Step 2: plot
19 col= colorRampPalette(c("red","blue"))(ncol(post))
20 windows(height=5,width = 5)
21 matplot(theta, post, col=col, type="l", lwd=3, lty=1, xaxt=’n’,
22 xlab=expression(theta),ylab=bquote(f˜"("˜theta˜"|"˜x[1:n]˜")"

))
23 axis(side = 1, at = 1:8)
24 abline(v = 5,col = ’green’)
25 legend("topright", paste0("n=",0:length(x)), lty=1, lwd=3, col=col)

(b) The posterior predictive is different from the prior predictive. This
is reflected in the difference between the prior and posterior.
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1 dprior_pred <- function(y,alpha=4, beta=2){
2 n = length(y)
3 lnf = array(NA,n)
4 for (i in 1:n) {
5 lnf[i] = alpha*log(beta)-sum(log(gamma(1:(y[i]))))-log(gamma(

alpha))+
6 log(gamma(alpha+y[i]))-(alpha+y[i])*log(beta+1)
7 }
8 return(exp(lnf))
9 }

10

11 dpost_pred <- function(y,d,alpha=4, beta=2){ ##d is array of data
12 alphaN = alpha + sum(d)
13 betaN = beta+length(d)
14 return(dprior_pred(y,alphaN,betaN))
15 }
16

17 # Step 2 plot
18 y=1:8
19 pred_den = array(NA,c(8,2))
20 pred_den[,1] = dprior_pred(y,alpha,beta)
21 pred_den[,2] = dpost_pred(y,x,alpha,beta)
22

23

24 col= colorRampPalette(c("red","blue"))(ncol(pred_den))
25 windows(height=5,width = 5)
26 matplot(y, pred_den, col=col, type="b", lwd=3, lty=1, xaxt = ’n’,
27 xlab=expression(x[n+1]),ylab=bquote(f˜"("˜x[n+1]˜"|"˜x[1:n]˜"

)"))
28 axis(side = 1, at = y)
29 legend("topright", paste0("n=",c(0,5)), lty=1, lwd=3, col=col)

1.3 Commonly Used Models and Representation

Example 1.4. The following distributions will be frequently encountered throughout the
course.
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Distribution Representation
N(µ, σ2) x = µ+ σz z ∼ N(0, 1)

θExp(1) x = θz z ∼ Exp(1)

Ga(α)/β x = 1
β

∑α
i=1 zi zi

iid∼ Ga(1) = Exp(1)

β/Ga(α) x = 1/z z ∼ Ga(α)/β

χ2
k x =

∑k
i=1 zi zi

iid∼ χ2
1

Po(θ) x =
∑θ

i=1 zi zi
iid∼ Po(1)

Bin(m, θ) x =
∑m

i=1 zi zi
iid∼ Bern(θ)

Beta(α, β) x = zα
zα+zβ

zj
iid∼ Ga(j)

Table 2: Representation of Common Distribution

The following examples show how representation can be a helpful tool.

Example 1.5. Let X, Y ∼ Ga(1). Find the distribution of Z = X
X+Y

.

Solution: By representation,

Z
d
=

Ga(1)

Ga(1) + Ga(1)
d
= Beta(1, 1).

That is Z ∼ Beta(1, 1).

 Takeaway: Representation technique helps us to determine the distributions of random

variables.

Example 1.6. (Optional*) Let [X | Y ] ∼ N(Y, Y 2) and Y ∼ Unif (0, 1). Prove that
X/Y ⊥⊥ Y .

Solution: We can jointly represent (X, Y ) as{
X = Y + Y Z
Y = U

⇒
{

X/Y = 1 + Z
Y = U

where Z ∼ N(0, 1) and U ∼ Unif(0, 1) are independent. Note that

• X/Y depends only on Z and Y depends only on U , and

• Z and U are independent.

We conclude that X/Y and Y are independent.

*This example is from STAT4003 Lecture Note 1 (Keith 2020).
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1.4 R Tips

Example 1.7. There are several methods/tricks that will be helpful in this course.

1. Four density-related functions in R. Take the normal distribution for an example.

(a) The function rnorm(nRep,mean,sd) samples from N(mean,sd) for nRep
times.

(b) The function qnorm(prob,mean,sd) returns the 100%×prob-th quantile of
N(mean,sd).

(c) The function pnorm(q,mean,sd) returns the value of F(q) where F is the CDF
of N(mean,sd).

(d) The function dnorm(q,mean,sd) returns the value of f(q) where f is the PDF
of N(mean,sd).

The functions for other distributions are similarly used by changing norm to
binom,beta,exp,gamma,t,chisq,etc., and specifying the corresponding param-
eters as arguments.

2. Usually, we want to find the expectation or variance of a complicated variables. Ana-
lytical results may be difficult to derive, instead, we can use Monte Carlo method to
find them based on a large number of samples from that distribution.

3. Remember to use set.seed(4010) to generate reproducible samples. You can
change 4010 to other numbers. It will help you to debug your codes and to justify
your results.

4. To debug, comment out your codes section by section and run again. If the bug disap-
pears, then the bugs are from the section you just commented out.

5. If you want to achieve something in R but have no clue at all, you can always find
references by Googling it. The best way to succeed in R programming is to practice.

3 Experiment:

1 #sampling standard normal
2 set.seed(4010)
3 x = rnorm(10ˆ4,0,1) #x is a sample of 10ˆ4 IID standard normal random

variables
4 z = qnorm(0.975,0,1) # z = 1.959964
5 p = pnorm(1.96,0,1) # p = 0.9750021
6 d = dnorm(0,0,1) # d = 0.3989423
7

8 # using Monte Carlo to find quantities related to a certain random
variable

9 expectation = mean(x) # expectation = -0.0100194
10 variance = var(x) # variance = 1.006437
11 quart = quantile(x,0.25) # quart = -0.6778637
12 prob = mean(x<1.96) # prob = 0.975
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3 Experiment: In previous example, we compute log-density first. Here is a motivating

example. How to compute exp(4010)
101585Γ(100)

using R?

1 ## standard but fail
2 exp(4010)/(gamma(100)*(10ˆ1585))
3 # [1] NaN
4

5 ## take log and then take exp
6 exp(4010-log(gamma(100))-1585*log(10))
7 # [1] 3.555239

2 Remarks on Assignment 1

Please check the platform first if you have questions.

 Remember to write indicators in the density.
 Make use of the fact that

∫
f(x)dx = 1 if f(·) is a probability density function.
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